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Abstract

a-Ketophosphonates are prepared by a [3,3]-sigmatropic shift of enolphosphonates.
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a-Ketophosphonates are one of the most interesting

and versatile classes of organophosphorus compounds.

a-Ketophosphonates undergo a diverse range of reac-

tions and therefore, have found many useful synthetic

applications both towards the preparation of other

organophosphorus compounds as well as the synthesis

of non-phosphorus containing molecules [1]. For in-
stance, the reduction of a-ketophosphonates affords

the corresponding a-hydroxyphosphonates [2]; treat-

ment of a-ketophosphonates with a Wittig reagent af-

fords the corresponding vinylphosphonates [3]; the

corresponding oximes [4] and hydrazones [5] can be ob-

tained from the reactions of a-ketophosphonates with

hydroxylamine and hydrazine; b,c-unsaturated-a-keto-
phosphonates can be epoxidized [6] and also undergo
a very facile Diels–Alder cycloaddition both as diene

[7] and hetero-dienophile [8]. Finally, C–P bond in a-
ketophosphonates is susceptible to facile cleavage un-

der nucleophilic attack, for instance during acidic and

basic hydrolysis [9] and therefore, a-ketophosphonates
can be considered as synthetic equivalents to acid chlo-

rides. More recently, asymmetric a-ketophosphonates
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containing a chiral phosphorus atom are prepared

which provide exciting opportunities for introducing

an asymmetric dimension in one or all of these reac-

tions [10].

One of the reactions of a-ketophosphonates which

has as yet remained unexplored is their C-alkylation at

the adjacent position to the C@O. Indeed, there are very
few examples in the literature pertaining to derivatiza-

tion at the b-carbon of a-ketophosphonates. Two exam-

ples of halogenation of a-ketophosphonates are

reported using either elemental bromine or chlorine

[11], or sulfuryl chloride (Scheme 1) [12]. No base is

required for either reaction and it is not certain if the

reactions proceed through enolization of a-ketophos-
a) SO2Cl2 (1.3 eq.), 7h, dark, rt; b) H2O2 (4 eq.), NaHCO3 (4 eq.), CH2Cl2

R = (CH2)14CH3, 75% 
R = (CH2)10CH3, 65% 

Scheme 1.

mailto:kamyar.afarinkia@kcl.ac.uk 


N
O

P O

O

i-Pr

N
O

P O

O

i-Pr

Ph

OH

N
O

P OLi

i-Pr N
O

P O

PhHO

i-Pr

HO Ph

O OH

a

a) LHMDS, THF, -78 ºC, then benzaldehyde

e. e. upto 47%

1

+

Scheme 2.

MeO

PMeO O

O
R

MeO

P
MeO O

O
Ph

MeO

P
MeO O

HO

Ph

MeO

PMeO O

AcO

R

exclusively (E) isomer

R = Me, 48% 
R = i-Pr, 48% 
R = (CH2)7CH3, 35% 
R = 2-thiophenyl, 67% 

Et3N, Ac2O,
CH2Cl2, 0 ºC

∆Gº = 8.3 kJ mol-1

EA = 92 kJ mol-1

(in DMSO)

Scheme 4.

Et O

PEt O O

R1

O

EtO

PEtO O

R1

OMe

Et O

PEtO O

R1

O 5a R1 = Me, 24%
5b R1 = i-Pr, 44%

4a R1 = Me

6a R1 =  Me, 12%
6b R1 = i-Pr, 18%

a,b

a,c

K. Afarinkia et al. / Journal of Organometallic Chemistry 690 (2005) 2688–2691 2689
phonates or whether they are radical initiated. Gordon

and Evans [10] reported isolation of an aldol product
from the reaction of a-ketophosphonates 1 (Scheme 2)

although the reaction affords substantial quantities of

a by-product and its mechanism is unclear.

Here, we report on a methodology for the C-alkyla-

tion of a-ketophosphonates 2 via a [3,3]-sigmatropic

shift of the corresponding allylenolphosphonates, 3

(Scheme 3). Furthermore, we will show that asymmetric

a-ketophosphonates undergo this reaction with diaster-
eoselectivity and that the selectivity in these reactions

is influenced by chirality at the phosphorus.

We had previously demonstrated that the enol tau-

tomers of a-ketophosphonates are thermodynamically

quite stable. Indeed, simple a-ketophosphonates under-
go very facile tautomerization to the extent that at room

temperature in polar solvents, significant quantities of

the enol tautomer can be spectroscopically observed
(Scheme 4) [13]. The enol tautomers can be ‘‘trapped’’

as vinylacetates [13], silylenolethers [13], and sulfonates

[14] which have in all cases been isolated as the E isomer.

Although a study of the relative stability of the enolate

anions of a-ketophosphonates has not been carried

out, it can be assumed that they are also thermodynam-

ically quite stable and that their formation is facile.

Therefore, it was doubtful from the outset if the enolates
derived from a-ketophosphonates would be reactive en-

ough to undergo C-alkylation. Indeed, enolate forma-

tion by treatment of a-ketophosphonates 4a and 4b

with organolithium bases such as LDA and BuLi and at-

tempted C-alkylation with various electrophiles failed to

give any desired product, affording instead mainly unre-

acted a-ketophosphonates. During the subsequent

extensive studies using various additives and reaction
conditions, we failed to obtain any C-alkylation prod-
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ucts. Careful examination of some reaction mixtures

however, revealed the presence of small quantities of

O-alkylation products. After further exploration, it be-

came possible to isolate phosphoenols 5a–7a and 5b–

7b by treatment of a-ketophosphonates 4a and 4b with
organopotassium bases such as t-BuOK and KHMDS,

followed by an excess of electrophiles such as allyl bro-

mide, crotyl chloride and cinnamyl bromide (Scheme 5)

[15]. The enol configuration in all compounds was found

to be exclusively trans as determined by large [3] JPH
couplings of 10–12 Hz, indicative of a cis arrangement

between the phosphorus atom and the olefinic hydro-

gen. This is consistent with the previous observations
on the O-acylation, O-silylation and O-sulfonation of

enolphosphonates [13,14].

When heated at reflux in toluene, phosphoenols 5a–

7a and 5b–7b underwent a clean and facile [3,3]-sigma-
EtO

P
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a) KHMDS,THF,-78 ºC, 3h.; b) allyl bromide, 25 ºC, 15h.;
c) crotyl chloride, 25 ºC, 15 h.; d) cinnamyl bromide, 25 ºC, 15 h.

4b R1 = i-Pr

7a R1 = Me, 29%
7b R1 = i-Pr, 31%

a,d

Scheme 5.
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tropic rearrangement to the corresponding a-ketophos-
phonates 8a–10a and 8b–10b (Scheme 6) [16]. Interest-

ingly, all six phosphoenols showed trace amounts of

the corresponding rearranged a-ketophosphonates when
stored at room temperature for period of days suggest-

ing the rearrangement is a facile reaction.
Compounds 9a–10a and 9a–10b were obtained as a

single diastereomer as determined by NMR spectros-

copy. The relative configuration of the rearranged prod-

ucts was assumed from a proposed chair transition state

for the sigmatropic shift (Scheme 7).

As expected, a-ketophosphonates 8–10 undergo effi-

cient nucleophilic displacement reactions with a variety

of nucleophiles with a concomitant loss diethyl phos-
phite (Scheme 8) [17].

In summary, we have shown that a-ketophospho-
nates can be alkylated at the position adjacent to the

C@O function through a two step process of O-allyla-

tion followed by a [3,3]-sigmatropic shift. The reaction

is stereospecific affording exclusively the anti (threo)

product.
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